Figure 5.1 The interdisciplinary role of cybernetics. Adapted from Kraizmer, Kibernetika. | TASK | DESCRIPTION | MATHEMATICAL
APPARATUS | COMPUTER
SCIENCE | ECONOMICS | |---|--|--|--|--| | Determine information flows | Determine connections
with environment and
external memory | Observation | Memory allocation | Study the distribution of information that controls the economy (economic documentation) | | 2. Determine the information code | Determine how information is coded | Statistical and
logical analysis,
coding theory | Creating a language for
task formulation, input,
and output | Study the methods of
economic information
coding | | Determine the functions of a control system | Setting specific time
intervals, determine the
functions of a control
system | Cybernetic experiment,
probabilistic processes | Determine the function of a computer program | Study the functioning of
systems that control the
economy | | Study the functioning of a control system | Evaluate the
achievement of goals,
organization, and
communication | Information theory,
game and automata
theory, operations
research | Evaluate the entropy of
various task classes
and the redundancy of
various coding
methods; evaluate
working time and
computer time | Evaluate the amount of
information, channel
capacity, transmission time,
and methods of decision-
making and self-regulation | | 5. Determine the
elements of a
control system | Determine the
elements, study their
properties, and classify
them by types | Statistical analysis,
logical analysis | Determine the classes
of operators and
develop standard
subroutines | Determine the elements of
economic processes and the
elements of economic
regions; use statistics to
determine their functions | | 6. Study the relations among the elements | Determine all the
relations essential for
the functioning of the
system | Cybernetic experiment,
graph theory,
network theory | Determine the types of
relations between
different operators | Study the relations among
the elements of economic
processes and among the
elements of economic
regions | | 7. Determine the
algorithms of a
control system | Determine the
(approximate)
algorithms of a certain
class of control
systems | Cybernetic experiment,
game theory,
theory of algorithms | Develop algorithms of
automatic
programming and
automatic program
testing | Develop approximate
algorithms for controlling
the economy | | 8. Analysis of a control system | Study the properties of algorithmic control | Information theory,
game theory, linear
programming | Derive an algorithm
from a program; study
the completeness of a
programming method
for a given class | Analyze the control of the economy | | HARDWARE
DESIGN | PRODUCTION
CONTROL | LINGUISTICS | GENETICS | EVOLUTION-
ARY THEORY | NEURO-
PHYSIOLOGY | |--|--|--|---|--|---| | Study the flows of information in a computer | Study the flows of
information that
controls production | | Study the methods
of transmitting
hereditary
information | Study the flows of
information that
controls evolution | Study the circulation
of information in the
nervous system and
in the receptors | | Study the methods
of coding numbers
and operators in a
computer | Study the methods of
information coding
in production control | Study the methods
of linguistic
information coding
in a computer | Study the methods
of hereditary
information
coding | Study the methods
of coding of
information that
controls evolution | Study the methods of
information coding
in the nervous
system and in the
receptors | | Determine if the
computer func-
tions according to
design | Determine the
function of
production control | Study the possibility
of machine
translation
algorithms | Study the ways in
which genotype is
expressed
(phenogenetics) | Study the
evolution of
populations under
specific conditions | Study reactions,
reflexes, and
behavior of animals | | Evaluate the
amount of
information in the
computer and its
productivity, and
collect operations
statistics | Analyze operations,
evaluate the amount
of information,
channel capacity,
and information
delays | Evaluate the entropy
of text classes and
information search
tasks; evaluate work
time and computer
time | Evaluate the
amount and study
the transmission of
genetic
information,
mutation and
selection | Evaluate the
amount of
information that
controls evolution;
study population
dynamics | Evaluate the amount
of information and
channel capacity of
the nervous system;
derive its structure
from its functioning | | Design elements
and storage
devices | Determine the chain
of production control
and the functions of
its links; develop
standardized links | Determine the
elementary acts of
linguistic algorithms
and develop methods
of implementation | Determine the
biochemical
carriers of
hereditary
information ("the
gene problem") | Determine the
elementary acts at
the basis of
evolution
("evolutionary
factors") | Determine the
elementary
constituents of the
nervous system, the
receptors, and their
elementary reactions | | Study the interaction of elements | Determine the
relations among
links and classify
them by types | Determine the
relations among
different operators in
linguistic algorithms | Study the structure
of genotype, the
localization of
genes, and the
structure of DNA | Study the
interactions of
different
evolutionary
factors | Study the relations
among individual
organs of the
nervous system | | Give a formal
description of the
structure and
functioning of
machines | Develop (possibly,
approximate)
algorithms for
production control | Develop algorithms
for machine
translation and
information systems | Develop an
algorithmic
description of the
transmission of
hereditary
information | Study the
circulation of
information that
controls evolution | Develop an
algorithmic
description of the
functioning of the
nervous system and
the receptors | | Study statistics of
the operation of
circuits | Study algorithms of
production control;
collect production
statistics | Experiment with
algorithms for
machine translation
and information
systems | Perform a genetic
analysis of
individual
organisms and
populations | Study population
dynamics and the
struggle for
existence | Study algorithms of
information
processing in the
nervous system | Figure 5.4 Methods and fields of cybernetic analysis. Adapted from Liapunov and Iablonskii, "Teoreticheskie problemy kibernetiki." Figure 5.6 The structure of the Scientific Council on Cybernetics of the Soviet Academy of Sciences. Adapted from Berg, ed., Kibernetiku—na sluzhbu kommunizmu, volume 5.